Mobile Navigation

Latest News: Technologies

Member Exclusive

A new process to make olefins from syngas

Light olefins, such as ethylene and propylene, are primarily made by the catalytic cracking of crude oil. Alternatively, two other methods were developed during the time of high oil prices, both of which convert synthesis gas (syngas) to olefins: the…

Member Exclusive

First commercial-scale gas fermenter in U.S. to break ground

The first commercial-scale, natural-gas-fermentation facility in the U.S. will break ground by the end of 2016, according to Alan Shaw, CEO of Calysta Inc. (Menlo Park, Calif.; www.calysta.com). In a collaboration with agricultural giant Cargill Inc. (Minneapolis, Minn.; www.cargill.com), Calysta…

Member Exclusive

Making H2 and graphite from methane

Sydney University’s Laboratory for Sustainable Technology (Sydney, Australia; www.sydney.edu.au) and the technology-commercialization-firm Hazer Group (Perth, Australia; www.hazergroup.com.au) are collaborating to scale up the Hazer Process, which uses an iron-ore catalyst to produce hydrogen and graphite from natural gas. Natural gas…

Member Exclusive

Partnership scales up the first ethylene-based metathesis process

A multi-company partnership has achieved the largest-ever use of molybdenum/tungsten (Schrock-type) catalysts for a metathesis process involving ethylene and renewable oils. The reaction run, which produced primarily 1-decene and 9-decenoic acid methyl ester from ethylene and plant oils, represented a…

Member Exclusive

Optimized version of polymer additive raises PP clarity

Milliken & Co. (Spartanburg, S.C.; www. millikenchemical.com) has optimized its core clarifying technology for polypropylene (PP) resin to raise the clarity level to compete with that of polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC). The optimized technology allows the…

Member Exclusive

A new catalyst may reduce costs of catalytic converters

Conventional catalytic converters in automobiles are based on heterogeneous catalyst systems with precious metals (such as Pt and Pd), rare earth elements and Ce (in the form of CeO2). However, the cost and limited resources of such metals is driving…

Member Exclusive

Recovering rhenium photochemically

Professor Hisao Hori and his research group at Kanagawa University (Hiratsuka City, Japan; www.kanagawa-u.ac.jp) have reported what is said to be the first photo-induced recovery of rhenium from aqueous solutions — an achievement with implications for an inexpensive way to…

Member Exclusive

Metal-organic-framework adsorbent promise to cut costs for capturing and storing flare gas

A process for the separation and recovery of stranded and associated natural gas is being developed by Framergy, Inc. (Wilmington, Del.; www.framergy.com), with support from the National Science Foundation’s Small Business Innovation Research (SBIR) Phase I program. The company is…

Member Exclusive

Bio-based heat-transfer fluid for solar-thermal applications

A recently introduced heat-transfer fluid is made from corn sugar, rather than from petroleum. Known as So-Blu, the fluid was developed through a joint effort of Dupont Tate & Lyle BioProducts (Loudon, Tenn.; www.duponttateandlyle.com) and SolarUS Inc. (Branford, Conn.; www.solarus.com),…

Chementator Briefs

Bio-based PET Later this year, Suntory Holdings Ltd. (Osaka, Japan; www.suntory.com) will start up a demonstration plant in Silsbee, Tex. for the production of 100% bio-based PET bottles. The company will introduce these PET with its Suntory Beverage & Food’s…