I D
× COMMENTARYCOVER STORYIN THE NEWSNEWSFRONTSCHEMENTATOR + Show More
Chemical EngineeringChementator Briefs
Biomethane Last month, NextChem, a subsidiary of Maire Tecnimont S.p.A.…
BUSINESS NEWSTECHNICAL & PRACTICALTOWER DOCTORFEATURE REPORTFACTS AT YOUR FINGERTIPSENGINEERING PRACTICEENVIRONMENTAL MANAGEREQUIPMENT & SERVICESFOCUSSHOW PREVIEWSDEPARTMENTSCHEM CHRONICLES

Comment uncategorized

Polyolefin deconstruction process could provide new use for post-consumer plastic waste

By Scott Jenkins |

A catalytic process to selectively break carbon-carbon bonds within the polymer chains of polyethylene and polypropylene could allow the use of waste plastics to make biodegradable surfactant molecules. Researchers led by the Institute for Cooperative Upcycling of Plastics (iCOUP) at the U.S. Department of Energy’s Ames National Laboratory (Ames, Iowa; www.ameslab.gov) developed the process, which catalytically cleaves polymer chains into shorter units by introducing organo-aluminum end groups. The scientists can then functionalize these end groups to make biodegradable fatty alcohols, carboxylic acids or other derivatives. The transformation (diagram) is enabled by C–H bond activation and ß-alkyl elimination reactions, in which a silica-supported zirconium catalyst forms a metal-alkyl intermediate that breaks C–C bonds within the polymer chain. Then, the complex is treated with tri-alkyl aluminum, forming shorter chain fragments with a triethylaluminum or tributylaluminum group at one end. The carboaluminum species can be derivatized using oxygen or other reagents to make fatty alcohols or carboxylic acids. “Using Zr catalysts that are dispersed on a silica surface, we can essentially reverse the mechanism used to polymerize…
Related Content

Chemical Engineering publishes FREE eletters that bring our original content to our readers in an easily accessible email format about once a week.
Subscribe Now
GMP In The Cosmetic Industry
Solve turbomachinery problems: Miba Tilting Pad Bearings
Six Steps to Designing a Storage Vessel That Really Works
SICK Solutions for Cleaner Industries - Powerful Transitions
Gain a Digital Line of Sight Across the Whole Lifecycle of the Plant with a Digital Twin

View More