A new, mechanical method for sequestration of carbon dioxide into water was evaluated at the University of Texas’ (Austin; www.utexas.edu) Bioproducts and Bioenergy Analytical Service Center and has revealed a pathway to economically improve algae growth for production of oils.…
In conventional solvent-based carbon-capture systems, CO2-rich exhaust gas contacts gravity-driven solvents in a vertical packed-bed column. A novel approach developed by Carbon Clean Solutions USA Inc. (CCSUS; Cumming, Ga.; www.carboncleansolutions.com) employs centrifugal force from rotating horizontal packed beds to effect…
Professor Kazuaki Ishigreo and colleagues at Nagoya University (Nagoya, Japan; http://en.nagoya-u.ac.jp) have shown that a chiral, supramolecular, U-shaped, boron Lewis acid catalyst (diagram) promotes the unprecedented multi-selective Diels–Alder reaction of propargyl aldehyde with cyclic dienes. The Diels–Alder reaction, which is…
A process that increases the water-recovery from reverse osmosis (RO) while producing a salt byproduct is being developed by Hyrec (Urla/Izmir, Turkey; www.hyrec.co). The process, which uses osmotically assisted RO (OARO), could be especially beneficial in coal-to-chemicals (CTC) plants in…
New PDH capability A new catalyst for propane dehydrogenation (PDH) that does not include precious metals has been developed by KBR Inc. (Houston, Tex.; www.kbr.com). The new catalyst is incorporated into KBR’s new PDH technology, known as K-PRO, which was…
Queensland Pacific Metals (Brisbane, Australia), a subsidiary of Pure Minerals (Perth, Australia; www.pureminerals.com.au) will use Direct Nickel Projects’ (Perth, Australia) proprietary technology to process New Caledonian nickel and cobalt ore, following favorable test results. Core Metallurgy (Brisbane, Australia) has assessed…
The research group of professor Osamu Ishitani at the Tokyo Institute of Technology (Japan; www.titech.ac.jp), in collaboration with the Institute of Advanced Industrial Science and Technology (AIST), has successfully demonstrated highly efficient, selective and durable photocatalytic CO2-reduction systems that only…
Last month, Sunfire GmbH (Dresden, Germany; www.sunfire.de) reported the successful startup and test run (more than 500 h) of a high-temperature, co-electrolysis system at its Dresden site since November 2018. The technology, called Sunfire-Synlink, is based on solid-oxide cells and…
Today, olefins are mainly made either by naphtha cracking or by the catalytic conversion of dimethyl ether (DME), which is in-situ made from synthesis-gas- (syngas) derived methanol (methanol-to-olefin processes). Both naphtha cracking and syngas production (from steam-methane reforming; SMR) require…
Researchers from Case Western Reserve University (CWR; Cleveland, Ohio; www.case.edu) have shown that a hybrid electrolytic system using a gaseous plasma electrode can produce ammonia from water and nitrogen at ambient temperature and pressure — without any catalytic material surface.…