Bio bisabolene
Through genetic engineering of microbes, scientists from Lawrence Berkeley National Laboratory’s (Berkeley, Calif.; www.lbl.gov) Joint BioEnergy Institute (JBEI) have coaxed both bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) to produce a chemical precursor to bisabolane — a critical step toward an improved renewable diesel alternative. The precursor can be converted to bisabolane when treated with hydrogen gas under pressure. Bisabolane, a plant-derived hydrocarbon chemically related to turpentine, was discovered to deliver comparable performance to standard D2 diesel fuel and superior cold weather performance. With continuous yield improvements, biosynthetic bisabolane could initially serve as a cold weather additive to diesel and biodiesel formulations and, at higher yields, could substitute for these fuels. The JBEI team inserted a gene from the Grand Fir tree into E. coli bacteria, and made genetic adjustments designed to optimize the production of bisabolene, boosting the yield of that chemical tenfold.
Raceways and cables
Last month, Bentley Systems, Inc. (Exton, Pa.; www.bentley.com) launched the first and only comprehensive, integrated software developed specifically to design,…
Chemical Engineering publishes FREE eletters that bring our original content to our readers
in an easily accessible email format about once a week.
Subscribe Now