Mobile Navigation

Processing & Handling

A closed-loop hydrometallurgical process for low-carbon iron processing

Electrification will be a key factor in decarbonizing hard-to-abate sectors, but challenges arise in applications that require very high temperatures, such as steel production. The intense heat requirements for converting iron ore into metal contribute significantly to the CO2 emissions…

A fungus converts cellulose directly into a platform chemical

Conventional bioprocesses use three separate steps to convert cellulose into products, such as bioplastics and biofuels. The consolidated bioprocess (CBP) combines all steps — cellulase production, cellulose hydrolysis and product fermentation — in a single reactor. Using the natural abilities…

CO2-to-methanol conversion improved with catalyst-support ion swap

Researchers at Oak Ridge National Laboratory (ORNL; Oak Ridge, Tenn.; www.ornl.gov) and a team of interdisciplinary scientists tripled the yield of methanol in the catalytic hydrogenation reaction of carbon dioxide by introducing hydrides into the catalyst support material. The researchers…

CO2 captured in stationary energy storage battery

An Oak Ridge National Laboratory (ORNL) team created and tested two different formulations for stationary batteries that could utilize CO2 from industrial sources while storing energy from wind turbines and solar panels. Consisting of two electrodes in a saltwater solution,…

A new reactor system for producing polymers

Traditionally, many polymerization reactions are carried out batchwise in reactor vessels, with the reaction taking place in solution, emulsion or in a melt. This procedure reaches its limits if, for example, the reaction is very exothermic or the viscosity increases…

This patented process improves grease handling

Calcium-sulfonate complex greases are widely used in applications in the pulp-and-paper, marine and steel-manufacturing sectors. Within an ever-volatile lithium market, calcium-sulfonate greases are increasingly seen as a reliable alternative to lithium-based greases. However, typical methods for preparing high-performance calcium-sulfonate grease…

Reducing CO2 to formic acid

A research team led by Kenneth C. Neyerlin at the National Renewable Energy Laboratory (NREL; Golden, Colo.; www.nrel.gov), with members from Argonne National Laboratory (Lemont, Ill; www.anl.gov) and Oak Ridge National Laboratory (Tenn.; www.ornl.gov) has developed a membrane electrode assembly…

How to Conduct a Thermal Audit of an Industrial Facility

The efficiency of steam-generating and distribution systems can be improved incrementally, but more substantial gains can be found using pinch analysis for better heat recovery When it comes to improving the energy efficiency of a thermal system, most industrial organizations…

Modular Construction: Choosing the Optimal Module Type

Plant process modules are not a one-size-fits-all solution. These considerations can help determine the best size for your project With the growing recognition of the advantages of modular construction over traditional field construction [1, 2], it’s no surprise that an…

Member Exclusive

Making cement with 70% lower CO2 emissions

A process commercialized by Fortera Corp. (San Jose, Calif.; www.forteraglobal.com) creates a cement product that reduces CO2 emissions by 70% on a ton-for-ton basis, and can be blended with conventional cement or used as a standalone material to make ready-mix…